Reranker Reference¶
bear.reranker ¶
ResourceScoringConfig ¶
Bases: BaseModel
Configuration for scoring resources by author.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
resource | Resource | Type of the resource to score. | required |
formula | Formula | Scoring formula to use for calculating resource scores. | required |
min_distance | float | Minimum distance threshold for results. | required |
n_per_author | int | Number of top results to count per author. | required |
Source code in bear/reranker.py
RerankConfig ¶
Bases: BaseModel
Configuration for reranking author.
Source code in bear/reranker.py
get_scoring_config(resource) ¶
Get scoring config for a specific resource type.
Source code in bear/reranker.py
Reranker ¶
Source code in bear/reranker.py
rerank(resources_sets) ¶
Rerank resources by author.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
resources_set | dict[str, list[dict]] | Resources set to rerank. e.g. {"work": [{resource}, ...], "grant": [{resource}, ...]} | required |
Returns:
| Type | Description |
|---|---|
list[dict] | dict[str, list[dict]]: Reranked resources. e.g., [{"id": int, "scores": {"total": float, "work": float, ...}}, ...] |
Source code in bear/reranker.py
group_by_author(resource_scores) staticmethod ¶
Post-process resource scores to group by author.
Source code in bear/reranker.py
flatten_result(result) ¶
Flatten a single result dictionary.
Source code in bear/reranker.py
flatten_results(results) ¶
calculate_resource_score(results, config) ¶
Calculate resource score by each author. Returns: {author_id: score}.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results | list[dict[str, Any]] | List of results to score. Raw results from Milvus search. | required |
config | ResourceScoringConfig | Configuration containing the scoring formula and parameters. | required |
Source code in bear/reranker.py
get_reranker(tag='default') ¶
Get default reranker.