Embedding Reference¶
bear.embedding ¶
TextType ¶
Provider ¶
Embedder ¶
Bases: Protocol
Protocol for embedding text into vector representations.
Example
Source code in bear/embedding.py
OpenAIEmbedder ¶
Embedder using OpenAI's API.
Source code in bear/embedding.py
info property ¶
Return information about the OpenAI embedder.
from_config(embedding_config) classmethod ¶
Create an OpenAIEmbedder instance from configuration.
Source code in bear/embedding.py
get_dimensions() cached ¶
embed(text, text_type) ¶
Use OpenAI to embed text into a vector representation.
Source code in bear/embedding.py
TEIEmbedder ¶
Embedder using Text Embedding Inference API (via OpenAI python client).
Source code in bear/embedding.py
info property ¶
Return information about the TEI embedder.
from_config(embedding_config) classmethod ¶
Create a TEIEmbedder instance from configuration.
Source code in bear/embedding.py
get_dimensions() cached ¶
embed(text, text_type) ¶
Use Text Embedding Inference to embed text into a vector representation.
Source code in bear/embedding.py
append_prefix(text, prefix) ¶
Append a prefix to the text or each item in the list.
get_embedder(embedding_config=config.default_embedding_config) ¶
Get the embedder instance based on configuration.
Source code in bear/embedding.py
embed_query(query, embedding_config=config.default_embedding_config) ¶
Embed a query string into a vector representation.
Source code in bear/embedding.py
embed_resources(resources, batch_size=256, embedding_config=config.default_embedding_config, embedding_field='embedding') ¶
Embed a list of resources in batch.
Source code in bear/embedding.py
Embedding Generation¶
The embedding module handles text vectorization using OpenAI's embedding models.
Features¶
- OpenAI API integration
- Batch processing
- Error handling and retries
- Multiple embedding model support
Supported Models¶
- text-embedding-3-large (default)
- text-embedding-3-small
- text-embedding-ada-002
Usage¶
Embeddings are automatically generated during the ingestion process.